안녕하세요.

TensorFlow docker image 를 윈도우즈에 설치하기

지난 포스트에서  docker의 마법을 활용해 (심지어 윈도우즈에다TensorFlow를 한 방에 설치해서 바로 활용하는 법을 정리한 바 있습니다.

이번에는 생성한 컨테이너를 다시 실행하거나 업데이트 하는 방법을 소개하고자 합니다. 이번 내용은 다음 도커 가이드에서 발췌하여 적용한 사례에 관한 부분입니다.


Docker 기본 사용법


앞서 docker에 대한 개념은 이해할 필요가 있는데 상위 링크에 자세한 설명이 있으니 참고하시기 바랍니다.


1. 컨테이너 시작


가상 머신을 수행하는 기기가 종료되면 (당연히) 여기서 (몰래) 돌고 있던 jupyter with TensorFlow server 역시 종료되게 됩니다. 따라서 Docker Quickstart Terminal를 다시 수행해야 합니다.


이때 설치된 컨테이너를 확인하기 위해 다음 명령을 수행합니다.


$ docker ps -a


상기 명령의 결과로 출력된 컨테이너 리스트 중에서 STATUS 항목으로 현재 수행 여부를 NAMES 에서 지정된 이름을 알 수 있습니다. 컨테이너가 수행 중이지 않다면 아래 명령과 더불어 NAMES 에 지정된 이름으로 해당 컨테이너를 실행시킬 수 있습니다.


$ docker start {컨테이너 이름}


 

2. 컨테이너 업데이트 하기


기본 사용법에 따르면 docker attach {컨테이터 이름} 을 통해 컨테이너에 접속할 수 있으나 활용 중인 TensorFlow container는 접속 시 console 없이 jupyter log 메시지만 출력하고 있는 관계로 아무런 명령을 수행할 수 없습니다. 따라서, 다음과 같이 외부에서 컨테이너에 명령을 수행할 수 있는 인터페이스를 활용하고자합니다.


docker exec {컨테이너 이름} {명령어 ... }


명령어는 bash shell에서 동작하는 대부분이 전달되는 것으로 보입니다. 

확인 차원에서 jupyter 의 확장 기능인 IPython Clusters 를 설치해 보았습니다.

자세한 설치 방법은 ipyparallel github guide를 참조했습니다.


$ docker ps

CONTAINER ID        IMAGE                            COMMAND             CREATED
             STATUS              PORTS                              NAMES
8eb60a8f3211        b.gcr.io/tensorflow/tensorflow   "/run_jupyter.sh"   5 weeks
 ago         Up 29 minutes       6006/tcp, 0.0.0.0:8888->8888/tcp   focused_yonath
$ docker exec focused_yonath pip ipyparallel


이와 같은 방식으로 컨테이너 외부에서도 추가 모듈을 설치하거나 업데이트할 수 있습니다.

안녕하세요. "생각의 웹"입니다.


요즘 핫 이슈인 TensorFlow의 백서(white paper)를 기반으로 속살(source code)을 파헤쳐 보고 정리한 자료를 다음과 같이 공유합니다.

잘못된 분석이 있다면 댓글로 남겨주시면 감사드리겠습니다.





아래는 각 슬라이드 별 내용을 간략히 설명한 것입니다. 참고하시기 바랍니다.


TensorFlow의 주요 특징 


  1. Dataflow 형태의 모델을 기반으로 손쉽게 딥러닝 프로그래밍할 수 있도록 제공 
  2. 모델을 다양한 디바이스(CPU, GPU, 원격)에서 효율적으로 분산 처리
전자를 통해 분석할 데이터를 효과적으로 처리(Extract, Transform, Load - ETL)하고 다양한 학습 모델을 활용할 수 있으며 추후 손쉽게 도식화할 수 있도록 초상위 프로그래밍 언어(VHLL)인 python API를 제공하고, 학습된 모델을 안드로이드와 같은 embedded system 에서 수행할 수 있는 C++ API를 제공합니다. 
후자의 경우는 계산 비용(computation cost)이 많이 드는 학습(training) 과정을 가용한 리소스를 효과적으로 활용하여 빠르게 분산처리할수 있습니다. 

TensorFlow의 기본 개념 


 Tensor, Operation, Attribute, Kernel, Device, Variable, Session, Client, Server 등이 있는데 간략히 요약하면 다음과 같습니다.
  • Tensor: 원래 의미는 2차원 이상의 배열이지만 여기에서는 임의의 차원을 가진 배열을 뜻합니다. TensorFlow는 방향성이 있는 그래프 구조로써 모델을 구성하는데 이때 이 그래프는 0개 이상의 입출력을 갖는 노드들의 연결체이며 노드는 operation의 instance 라고 할 수 있습니다.   
  • Operation: 임의의 계산을 수행하는 것으로 다양한 속성 값(attribute)을 가질 수 있습니다.
  • Kernel: 커널은 operation을 디바이스 별로 실제 구현한 것으로 가속화를 위해 다양한 분산 최적화 알고리즘을 활용하고 있습니다. 실제 코드 상에서는 처리되는 곳이 CPU인지, GPU 인지에 따라 다른 구현을 활용하도록 되어 있습니다.
  • Variable: 변수란 학습을 통해 변화하는 배열 값을 저장하기 위한 operation입니다. TensorFlow가 학습할 때 다양한 디바이스에 분산하여 처리하는 구조를 띄기 때문에 명시적으로 type을 지정해 줍니다. 
  • Session: TensorFlow 그래프를 구성한 후 실제 수행을 할 때 다양한 실행 환경(CPU, CPU/GPU, 원격 분산처리) 하에서 처리하기 위해서 Client 에서 session을 만들어 전달하는 개념입니다. 

Sample TensorFlow Code and Graph 



상단 좌측의 예제의 코드처럼 Python으로 구현하면 해당 코드가 상단 우측과 같은 그래프 형태의 구조로 구성되게 됩니다. 그리고 Session을 이용해 하나의 디바이스 혹은 여러 개의 디바이스로 수행됩니다.


Previous Work 



TensorFlow는 google의 대용량 분산 ML 서비스 (구글 이미지 등)에 활용된 바 있는 DistBrief의 개발 경험을 바탕으로 핵심 기술인 Downpour SDG (Stochastic Gradient Descent) 와 Sandbluster L-BFGS 알고리즘을 활용하고 MS 연구소의 Project Adam과 Parameter Server Project를 참고하였습니다.


Feature Comparison 



백서에 따르면 표와 같이 TensorFlow 와 유사 플랫폼의 기능을 비교해 두었으나 시간에 따라 다른 플랫폼들 역시 기능을 추가하고 있는 관계로 최신 비교는 wikipedia를 참고하기 바랍니다.


Execution Mode 



앞서 언급한 바와 같이 TensorFlow의 특장점은 다양한 디바이스에서 수행된다는 점입니다. Single Device (CPU only), Multiple Devices (CPU & GPU), 분산 환경(distributed)에서 자원을 효과적으로 활용하여 수행할 수 있습니다. 이를 위해 operation을 어느 디바이스에 할당할 것인가에 대한 전략부터 디바이스 간 오류 없는 커뮤니케이션을 제공하기 위핸 기능들이 활용되고 있습니다. 특히 분산환경에서는 Multiple Devices의 고려 사항 외에도 오류 발생 시 대응하기 위해 메시지가 손상되었을 때의 복구, worker process의 상태 점검 기능들을 추가 고려하였습니다.



Programming Idioms 



내부적으로 최적의 수행 방안을 찾기 위한 기능들이 구현되어 있지만 사용자가 딥러닝 알고리즘의 특성에 따라 적절한 형태로 분산처리 되도록 코드를 구현할 것을 제안합니다.  예를 들어 학습 모델에 따라 데이터나 모델을 적절히 쪼개 병렬 처리하거나 비동기 함수를 이용해 동시성 처리할 수 있도록 하면 좋습니다.


Source Code Metrics 



github에 공개된 v0.8를 기준으로 코드 사이즈는 약 114 MB 수준이며 대부분 C++과 python으로 구현되어 있습니다. cloc 도구로 분석하면 이외에도 다양한 개발 언어 (bash, HTML, javascript, typescript, object C 등등) 이 등장하는데 process/언어 간 data communication (IPC, RPC)으로 활용하고 있는 Protocol Buffer에 속한 코드입니다.


How It Works 


핵심 코드인 C++과 python은 SWIG 인터페이스를 통해 상호 호출할 수 있도록 구현되어 있습니다. SWIG wrapper은 *.i 파일에 인터페이스 연결 고리를 명시해 두면 compile time에 관련 코드를 생성해 연결합니다. C++과 python 간의 형(type) 과 C++ 인터페이스를 연결하기 위한 코드도 볼 수 있습니다. 추후 설명하겠지만 모델을 통해 학습하는 선언 부(declaration)는 python에서, 실제 수행하는 부분은 C++ 에서 처리하고 있습니다. 


C++ Code Structure   



먼저 기반 프레임워크와 알고리즘이 실제 수행되는 코드를 담고 있는 core 부분은 대부분 C++로 구현되어 있습니다.


C++ Framework 



TensorFlow의 데이터 구조의 기반이 되는 클래스들과 dynamic allocation이 필요한 구성요소에 대해  smart pointer 를 활용한 Reference Counter 를 상속 받아 활용합니다. C++ 코드의 대부분을 차지하는 kernel 코드의 기반 클래스 역시 여기에 구현되어 있습니다. 가장 기본이 되는 Tensor 클래스에서는 배열 연산의 편의를 위한 다양한 메소드가 구현되어 있음을 볼 수 있습니다.


C++ Kernels 


   

이 폴더에는 알고리즘을 CPU/GPU를 통해 고속처리하기 위한 다양한 구현체가 존재하며 CUDA를 활용한 알고리즘은 별도의 {알고리즘 명}_op.cc 파일에 구현하고 있습니다. 고속 알고리즘을 구현하는 개발자들을 위해 이 영역에서만 따로 빌드하고 테스트할 수 있도록 구성되어 있습니다. 자세한 내용은 How To에서 확인할 수 있습니다.


Python Code Structure 



/python 폴더 아래 대부분의 *.py 파일들이 존재하며 operation이 있는 ops/ 와 training/ 에 가장 많은 코드가 존재합니다. 일부 SWIG 을 통해 C++ 간의 연결을 위한 C++ 코드들도 보입니다.


Python Implementation 



Operation에는 tensor 연산을 빠르게 수행할 수 있는 다양한 함수를 제공하고 있으며 Trainings 에는 알려진 다양한 ML 알고리즘과 분산처리를 위한 코드들이 존재합니다. 


Code Summary 



요약하면 python code에는 operation과 training 관련 코드들이 대부분이고 그래프를 만들어 훈련하기 위한 손쉬운 python API들이 제공됩니다.

반면 C++ code에는 기초 프레임워크 코드와 디바이스에서 고속 배열 연산이 가능하도록 구현된 코드들이 있습니다. 또한 임베디드 환경에서 테스트를 수행할 수 있도록 간단한 C++ API를 제공합니다.


 

  1. Archtectist 2017.02.18 16:46 신고

    좋은 글 감사합니다. 자료 모으고 있어서 퍼갑니다. 저작권에 문제되면 연락주시면 삭제하겠습니다.

  2. Kim Jin Hwan 2019.03.19 12:37 신고

    깔끔하게 정리해 주셔서 공부에 많은 도움이 됐습니다!!
    감사합니다.

[그림1] 취학 아동 사례



안녕하세요. "생각의웹"입니다.


 근 몇 년간 핫 이슈였던 빅데이터에 대해 환상이 사그라지는 분위기지만 데이터 기반 접근법(data approach)는 모든 분야에 있어 원칙으로 자리잡고 있습니다. 2015년 가트너의 경우, 매년 발표하는 Hype Cycle for Emerging Tech. 에서 빅 데이터를 제외했는데 그 이유로 더이상 빅 데이터가 특정 기술이 아닌 모든 산업의 기반 기술로써 편재하게 되었기 때문이라고 언급한 바 있습니다.


[그림 2] Gatner Hype Cycle 2015 - 더이상 Big data를 찾아 볼 수 없다


 빅데이터와 더불어 미래를 이끌 것으로 예견되는 기술들 역시 막연한 환상에서 벗어나 가치에 대해 재조명되어가는 형국입니다. 그림2는 사물인터넷(IoT)와 기계학습(ML) 그리고 웨어러블 등이 죽음의 골짜기(death valley)를 향하고 있음을 보여주는데 이 모든 기술들이 근 몇 년동안 세상을 바꿀 신기술들로 빠르게 성장(hype)했음을 주목할 필요가 있습니다.


앞서 언급한 빅데이터, 사물인터넷, 기계학습, 웨어러블 기술은 상호 밀접한 관계를 가지고 있습니다. 예를 들어, 웨어러블 기기가 생체신호 및 위치 정보를 다수의 사람들에게서 수집하여 빅데이터 화하고 기계학습을 이용해 데이터마이닝(data mining)한 후 찾은 인사이트를 기반으로 가설(hypothesis)을 만들고 실험(experiments)을 통해 증명하게 됩니다. 이때, 사물인터넷을 이용해 다양한 기기들과 상호작용하여 실험 결과를 도출하는 과정이라고 할 수 있겠습니다. 이 모든 과정의 본질은 데이터에서 가치를 추출하는 과정 즉, 데이터 분석입니다. 이번 포스팅에서는 간략하게 등하교 알림 데이터로 실 사례로 이 과정을 예시해 보도록 하겠습니다. 



[그림3] SMS 메시지와 SMS dump 도구 (SMS to Text)



0. 준비물

  • 아이의 등하교 알림 메세지 (by JT통신 i알리미 서비스)
  • SMS to Text (from google Play 스토어)
  • MS Excel 


1. 배경


올 해 아이가 초등학교에 입학하게 되어 명실상부 학부모가 되었습니다. 대부분 초등학교는 집에서 멀지 않은 곳으로 배정받게 되는데 제가 살고 있는 곳에서 초등학교 가는 길이 걸어서 통학하기에는 위험요소가 많습니다. 따라서, 학원 차량 편을 통해 통학하고 있는데 혹시 차량 이동 간에 있을 수 있는 사고에 신경이 쓰입니다. 

이런 이유에서인지 해당 학교에서는 비콘 기반의 등하교 확인 서비스를 시작했는데 그림 3과 같이 아이의 등하교 시 등록된 부모의 연락처에 SMS를 보내주는 서비스입니다.


2. 전처리


SMS를 가공하기 위해서 SMS log를 텍스트 파일로 저장해주는 도구를 다운로드 받습니다. (그림 3은 SMS to Text 라는 도구를 보여줍니다.) 이 도구를 통해 관련된 메시지를 csv파일로 저장하고 이 파일을 컴퓨터로 가져옵니다.

csv파일을 엑셀로 열면 한글이 깨져 보입니다. 따라서 텍스트 에디터로 열어 한글을 제거하고 중복되는 문구를 의미에 맞도록 바꿉니다.



Date,Time,Type,Number,Name,Who,Date2,At,Where,Count
2016-04-27,13:21:27,in,16444265,16444265,joyan,4/27,13:21,front gate,-1
2016-04-28,08:44:54,in,16444265,16444265,joyan,4/28,08:44,front gate,1
2016-04-28,13:56:45,in,16444265,16444265,joyan,4/28,13:56,front gate,-1

 


[그림4] 전처리 후 데이터 


그림4는 메세지 내용을 정리해서 누가 언제 어디로 출입했는지로 정리했음을 보여줍니다.


3. Tidy data table로 변경 


전처리를 완료된 데이터셋을 excel로 불러들인 후, 분석에 불필요한 정보를 제거 합니다. 앞서 그림4에서 Type, Number, Name은 모두 동일한 값들이라 제거합니다.

또한 등교를 학교에 학생이 증가한다는 의미로 +1를, 하교를 -1로 바꾸어 Count 항목으로 명시합니다. 


4. Feature engineering


Feature engineering이란 기계학습 알고리즘에 활용하기 위한 features를 생성하는 것으로 이때 domain knowledge를 활용[Wikipedia]합니다. 여기에서 추가 설계한 feature는 다음과 같습니다.


  • 요일: 해당 날짜의 요일을 1~7로 표현. (일: 1, 월: 2, 화: 3, 수: 4, 목: 5, 금: 6, 토: 7)
  • 출입시간과 SMS 수신 시간의 차: SMS는 지연이나 누락될 수 있는 서비스라서 지연 시간을 계산

[그림5] Feature Engineering 결과


5. 탐색적 데이터 분석 (Exploratory Data Analysis, EDA)


데이터의 일부를 발췌하여 보거나 통계적 특성을 살피면서 데이터의 특성을 파악하는 작업입니다. 시각화(visualization)을 활용해서 시각적 특성을 찾으면 좋은 인사이트를 발굴할 수 있습니다. 먼저, 통계적 특성을 확인하기 위해 사용하는 시각화 기법으로 상자수염그림(boxplot), 산점도(scatterplot)이 있어서 이것을 그려보기로 했습니다.

[그림6] At과 Count로 그린 상자 수염 그림


그림6은 등하교시간과 등하교 형태로 그린 상자 수염 그림[위키] 입니다. 그림에서 보듯 하교(-1)는 평균 (mean) 시간은 오후 1시 29분이고 1사분위와 3사분위 값이 각각 오후 12시 46분에서 1시 58분임을 보여줍니다. 반대로 등교시간은 상대적으로 일정한데 평균 값은 8시 45분입니다. 약 15분 전에 정문을 통과한다고 볼 수 있겠네요. 0 값으로 표시된 경우는 정문에 설치된 비콘에 등교 이후 관찰되었을 경우 메시지를 전달하는 경우로 보이는데 유용성을 이해하기 힘듭니다. 일단 하교 시간의 변화(variance)가 커서 이를 요일 별로 분석해 보도록 하겠습니다.


[그림7] At 과 Count로 그린 산점도


그림7은 요일별로 관찰된 출입시간을 점으로 표시한 것입니다. 앞서 그림6에서처럼 등교 시간은 일정하게 모이는 반면, 하교 시간은 월/수 (2/4)와 수/목(3/5), 금(6)이 사뭇 다르게 보입니다. 이는 아이의 시간표에 따라 귀가 시간이 변하기 때문에 나타나는 당연한 결과라고 볼 수 있습니다. 다만, 수요일 1시 21분에 하교한 사례나 금요일 오후 2시 39분 사례처럼 특이점이 있으니 이유를 살펴 보아야 할 것 같습니다. 



6. Findings


앞서 EDA에서 보여주듯 관찰을 통해 일상의 통학 시간을 확인할 수 있습니다. 이는 기계학습을 통해 정상적으로 통학했음을 확인할 수 있는 모델을 만들 수 있다는 의미로 해석할 수 있습니다. 지금은 데이터가 매우 적은 관계로 일반화할 수 없지만 같은 반이나 같은 학년의 데이터를 활용할 수 있으면 가능할 것이라고 기대합니다.


일상적인 등하교 시간에 대한 모델을 학습할 수 있게 된다면 이를 통해 비정상 상황을 예측할 수 있습니다. 예를 들면 등교 시간이 평소보다 많이 지연되었을 경우 확인 요청 문자를 발송한다거나, 하교 시간이 평소보다 늦어질 경우, 교사에게 확인 요청 메시지를 발송해서 학부모들의 우려를 먼저 대처할 수 있습니다.   


비콘을 이용한 통학 안전 관련 서비스의 핵심은 특이점 찾기(outlier detection) 입니다. 좀 더 쉽게 말하면, 등교 시간이 넘었음에도 관찰이 되지 않거나, 하교 시간이 매우 지연되는 사례 혹은 관찰이 되지 않는 경우를 들 수 있습니다. 이때 공휴일 여부/비콘 기기 정상 동작 여부 등의 외부 정보가 매우 중요한데 잘못된 알림이 시스템의 신뢰도에 치명적인 손상을 가져오기 때문입니다.


7. Future Works


이 문자 메세지는 정상 상황에서만 알림을 주도록 설계되어 있습니다. 하지만 정작 중요한 정보는 비정상 상황에서의 알림입니다. 그럼에도 불구하고 이상 알림(False Alarm)에 대한 부담감 때문에 이런 서비스를 제공하기 쉽지 않다는 게 현실입니다. 

이에 대해 활용자가 위험을 부담하는 DIY 서비스를 만들 수 있도록 하면 어떨까요? SMS 정보를 입력으로 학습하고 알람에 대한 평가를 반영해 성능을 개선해 가는 기계학습 시스템을 생각해 보게 됩니다.     


  



 

  




 



   

+ Recent posts